Precipitous release of methyl-CpG binding protein 2 and histone deacetylase 1 from the methylated human multidrug resistance gene (MDR1) on activation.
نویسندگان
چکیده
Overexpression of the human multidrug resistance gene 1 (MDR1) is a negative prognostic factor in leukemia. Despite intense efforts to characterize the gene at the molecular level, little is known about the genetic events that switch on gene expression in P-glycoprotein-negative cells. Recent studies have shown that the transcriptional competence of MDR1 is often closely associated with DNA methylation. Chromatin remodeling and modification targeted by the recognition of methylated DNA provide a dominant mechanism for transcriptional repression. Consistent with this epigenetic model, interference with DNA methyltransferase and histone deacetylase activity alone or in combination can reactivate silent genes. In the present study, we used chromatin immunoprecipitation to monitor the molecular events involved in the activation and repression of MDR1. Inhibitors of DNA methyltransferase (5-azacytidine [5aC]) and histone deacetylase (trichostatin A [TSA]) were used to examine gene transcription, promoter methylation status, and the chromatin determinants associated with the MDR1 promoter. We have established that methyl-CpG binding protein 2 (MeCP2) is involved in methylation-dependent silencing of human MDR1 in cells that lack the known transcriptional repressors MBD2 and MBD3. In the repressed state the MDR1 promoter is methylated and assembled into chromatin enriched with MeCP2 and deacetylated histone. TSA induced significant acetylation of histones H3 and H4 but did not activate transcription. 5aC induced DNA demethylation, leading to the release of MeCP2, promoter acetylation, and partial relief of repression. MDR1 expression was significantly increased following combined 5aC and TSA treatments. Inhibition of histone deacetylase is not an overriding mechanism in the reactivation of methylated MDR1. Our results provide us with a clearer understanding of the molecular mechanism necessary for repression of MDR1.
منابع مشابه
Methyl CpG binding protein 2 (MeCP2) primarily binds to methylated CpG islands and plays a critical role in mediating transcriptional repression by recruiting histone deacetylase complexes
Methyl CpG binding protein 2 (MeCP2) binds to methylated DNA and acts as a transcriptional repressor. Mutations of human MECP2 gene lead to Rett syndrome, a severe neural developmental disorder. Here, we report that the MeCP2 protein can be modified by covalent linkage to small ubiquitinlike modifier (SUMO) and SUMOylation at lysine 223 is necessary for its transcriptional repression function. ...
متن کاملEpigenetic regulation of WTH3 in primary and cultured drug-resistant breast cancer cells.
Previous studies showed that the WTH3 gene functioned as a negative regulator during multidrug resistance (MDR) development in vitro. To understand whether this gene is also involved in clinical drug resistance, hypermethylation at its promoter region observed in cultured MDR MCF7/AdrR cells was examined in primary drug-resistant breast cancer epithelial cells isolated from effusions of breast ...
متن کاملMBD3L2 interacts with MBD3 and components of the NuRD complex and can oppose MBD2-MeCP1-mediated methylation silencing.
MBD2 and MBD3 are two proteins that contain methyl-CpG binding domains and have a transcriptional repression function. Both proteins are components of a large CpG-methylated DNA binding complex named MeCP1, which consists of the nucleosome remodeling and histone deacetylase complex Mi2-NuRD and MBD2. MBD3L2 (methyl-CpG-binding protein 3-like 2) is a protein with substantial homology to MBD2 and...
متن کاملMethamphetamine downregulates striatal glutamate receptors via diverse epigenetic mechanisms.
BACKGROUND Chronic methamphetamine (METH) exposure causes neuroadaptations at glutamatergic synapses. METHODS To identify the METH-induced epigenetic underpinnings of these neuroadaptations, we injected increasing METH doses to rats for 2 weeks and measured striatal glutamate receptor expression. We then quantified the effects of METH exposure on histone acetylation. We also measured METH-ind...
متن کاملCytosine methylation represses glutathione S-transferase P1 (GSTP1) gene expression in human prostate cancer cells.
Methylation of the glutathione S-transferase P1 (GSTP1) gene has been described as a highly specific and sensitive biomarker for prostate cancer. However, at present, it is not known whether methylation represses GSTP1 gene expression in human prostate cancer. We found the GSTP1 gene promoter to be completely methylated in the LNCaP prostate cancer cell line, where this gene is transcriptionall...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular and cellular biology
دوره 22 6 شماره
صفحات -
تاریخ انتشار 2002